Properties of Transformations

Transform the polygon using the ordered pair rule $(x, y) \longrightarrow(x+2, y-3)$

$$
\begin{aligned}
& A(-8,1) \rightarrow A^{\prime}(-6,-2) \\
& B(-5,5) \rightarrow B^{\prime}(-3,2) \\
& C(-2,0) \rightarrow C^{\prime}(0,-3) \\
& D(-4,-2) \rightarrow D^{\prime}(-2,-5)
\end{aligned}
$$

Ordered Pair rule - $(x, y) \rightarrow(x+h, y+k)$ results in a horizontal move of h units and a vertical move of k movements.

This rule can be written as a vector.
<h, k>
Rule from previous page: Translation Vector: <2, -3>

> Transform the polygon by using the ordered pair rule $(x, y) \rightarrow(x,-y)$.
> $P(-1,-2) \rightarrow P^{\prime}(-1,2)$
> $Q(2,-s) \rightarrow Q^{\prime}(2,5)$
> $R(6,-3) \rightarrow R^{\prime}(6,3)$
> $S(3,1) \longrightarrow(3,-1)$

Ordered pair rule $(x, y) \rightarrow(x,-y)$ is a reflection across the x-axis

Draw this graph on a piece of graph paper

 H
 I
 J
 K

The ordered pair rule $(x, y) \rightarrow(-x, y)$ is a reflection across the y-axis The ordered pair rule $(x, y) \rightarrow(-x,-y)$ is a rotation 180° about the origin The ordered pair rule $(x, y) \rightarrow(y, x)$ is a reflection across the line $y=x$ The ordered pair rule $(x, y) \rightarrow(-y, x)$ is a rotation 90° counterclockwise about the origin
The ordered pair rule $(x, y) \longrightarrow(-y,-x)$ is a reflection across the line $y=-x$
Ordered pair rule $(x, y) \rightarrow(y,-x)$ is a 90° clockwise rotation about the origin

