Properties of Transformations	

Transform the polygon using the ordered pair

rule $(x, y) \longrightarrow (x+2, y-3)$

$$A(-8,1) \rightarrow A'(-6,-2)$$

 $B(-5,5) \rightarrow B'(-3,2)$
 $C(-7,0) \rightarrow C'(0,-3)$
 $D(-4,2) \rightarrow D'(-5,5)$

Ordered Pair rule - $(x, y) \rightarrow (x+h, y+k)$ results in a horizontal move of h units and a vertical move of k movements.

This rule can be written as a vector.

<h, k>

Rule from previous page: Translation Vector:

<2, -3>

Transform the polygon by using the ordered pair rule $(x,y) \rightarrow (x,-y)$.

Ordered pair rule $(x,y) \rightarrow (x,-y)$ is a reflection across the x-axis

Draw this graph on a piece of graph paper

H

T

ナ

K

The ordered pair rule $(x,y) \rightarrow (-x,y)$ is a reflection across the y-axis

The ordered pair rule $(x,y) \rightarrow (-x,-y)$ is a rotation 180° about the origin

The ordered pair rule $(x,y) \rightarrow (y,x)$ is a reflection across the line y=xThe ordered pair rule $(x,y) \rightarrow (-y,x)$ is a rotation 90° counterclockwise about the origin

The ordered pair rule $(x,y) \longrightarrow (-y,-x)$ is a reflection across the line y = -x

Ordered pair rule (x,y)—(y,-x) is a 90° clockwise rotation about the origin